Velocity Transformation in SR
by Hugo Lizzi
March 172017

Without rigorous proof I present the following vector formula for addition of velocities in 3 dimensions. I derived (inferred?) it from the common velocity addition formula presented in introductory SR texts. I use this formula all the time for transforming velocities of moving objects between reference frames. It works for objects with velocity magnitude c too;

Given:

- An inertial reference frame S for which the velocity of an object is specified as u.
- inertial reference frame S^{\prime} with velocity v relative to S.

The velocity of the object u' with respect to S ' is given by.

$$
\overrightarrow{u^{\prime}}=\left(\frac{\overrightarrow{u_{\|}}-\vec{v}}{\left(1-\left(\frac{\vec{v} \cdot \vec{v}}{c^{2}}\right)\right)}\right)+\left(\frac{u_{\perp v}}{\gamma\left(1-\left(\frac{\vec{u} \cdot \vec{v}}{c^{2}}\right)\right)}\right)
$$

Where:

- \vec{u} is a 3 dimensional vector specifying the velocity of an object with respect to reference frame S.
- $\overrightarrow{u^{\prime}}$ is a 3 dimensional vector specifying the velocity of the same object with respect to reference frame S^{\prime}.
- \vec{v} is a 3 dimensional vector specifying the velocity of S^{\prime} with respect to S. (u and v do not have to be parallel.)
- $\overrightarrow{u_{\| v}}$ is that portion of velocity \vec{u} which is parallel to \vec{v}.
- $u_{\perp v}$ is that portion of velocity \vec{u} which is perpendicular to \vec{v}.
- $\vec{u} \cdot \vec{v}$ is the scalar product of vectors \vec{u} and \vec{v} (dot product).
- γ is the relativistic gamma factor for the velocity of S^{\prime} with respect to S.

Substituting for parallel and perpendicular vectors, I get.

$$
\overrightarrow{u^{\prime}}=\left(\frac{(\vec{u} \cdot \hat{v}) \hat{v}-\vec{v}}{\left(1-\left(\frac{\vec{u} \cdot \vec{v}}{c^{2}}\right)\right)}\right)+\left(\frac{\vec{u}-(\vec{u} \cdot \hat{v}) \hat{v}}{\gamma\left(1-\left(\frac{\vec{u} \cdot \vec{v}}{c^{2}}\right)\right)}\right)
$$

Where: \hat{v} is the unit vector of \vec{v}. (the direction of \vec{v}).

