Velocity Transformation in SR

by Hugo Lizzi March 17 2017 Without rigorous proof I present the following vector formula for addition of velocities in 3 dimensions. I derived (inferred?) it from the common velocity addition formula presented in introductory SR texts. I use this formula all the time for transforming velocities of moving objects between reference frames. It works for objects with velocity magnitude c too;

Given:

- An inertial reference frame S for which the velocity of an object is specified as u.
- inertial reference frame S' with velocity v relative to S.

The velocity of the object u' with respect to S' is given by.

$$\vec{u'} = \left(\frac{\vec{u_{\parallel v}} - \vec{v}}{\left(1 - \left(\frac{\vec{u} \cdot \vec{v}}{c^2}\right)\right)}\right) + \left(\frac{\vec{u_{\perp v}}}{\gamma \left(1 - \left(\frac{\vec{u} \cdot \vec{v}}{c^2}\right)\right)}\right)$$

Where:

- \vec{u} is a 3 dimensional vector specifying the velocity of an object with respect to reference frame S.
- $\vec{u'}$ is a 3 dimensional vector specifying the velocity of the same object with respect to reference frame S'.
- \vec{v} is a 3 dimensional vector specifying the velocity of S' with respect to S. (u and v do not have to be parallel.)
- $\vec{u_{\parallel v}}$ is that portion of velocity \vec{u} which is parallel to \vec{v} .
- $\vec{u_{\perp v}}$ is that portion of velocity \vec{u} which is perpendicular to \vec{v} .
- $\vec{u} \cdot \vec{v}$ is the scalar product of vectors \vec{u} and \vec{v} (dot product).
- γ is the relativistic gamma factor for the velocity of S' with respect to S.

Substituting for parallel and perpendicular vectors, I get.

$$\vec{u'} = \left(\frac{(\vec{u} \cdot \hat{v})\hat{v} - \vec{v}}{\left(1 - \left(\frac{\vec{u} \cdot \vec{v}}{c^2}\right)\right)}\right) + \left(\frac{\vec{u} - (\vec{u} \cdot \hat{v})\hat{v}}{\gamma\left(1 - \left(\frac{\vec{u} \cdot \vec{v}}{c^2}\right)\right)}\right)$$

Where: \hat{v} is the unit vector of \vec{v} . (the direction of \vec{v}).